Integral von $$$5^{x^{2}} x$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int 5^{x^{2}} x\, dx$$$.
Lösung
Sei $$$u=x^{2}$$$.
Dann $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (die Schritte sind » zu sehen), und es gilt $$$x dx = \frac{du}{2}$$$.
Also,
$${\color{red}{\int{5^{x^{2}} x d x}}} = {\color{red}{\int{\frac{5^{u}}{2} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = 5^{u}$$$ an:
$${\color{red}{\int{\frac{5^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{5^{u} d u}}{2}\right)}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=5$$$:
$$\frac{{\color{red}{\int{5^{u} d u}}}}{2} = \frac{{\color{red}{\frac{5^{u}}{\ln{\left(5 \right)}}}}}{2}$$
Zur Erinnerung: $$$u=x^{2}$$$:
$$\frac{5^{{\color{red}{u}}}}{2 \ln{\left(5 \right)}} = \frac{5^{{\color{red}{x^{2}}}}}{2 \ln{\left(5 \right)}}$$
Daher,
$$\int{5^{x^{2}} x d x} = \frac{5^{x^{2}}}{2 \ln{\left(5 \right)}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{5^{x^{2}} x d x} = \frac{5^{x^{2}}}{2 \ln{\left(5 \right)}}+C$$
Antwort
$$$\int 5^{x^{2}} x\, dx = \frac{5^{x^{2}}}{2 \ln\left(5\right)} + C$$$A