Integral von $$$\frac{x^{21}}{x^{2} - 4}$$$

Der Rechner bestimmt das Integral/die Stammfunktion von $$$\frac{x^{21}}{x^{2} - 4}$$$ und zeigt die Rechenschritte an.

Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale

Bitte schreiben Sie ohne Differentiale wie $$$dx$$$, $$$dy$$$ usw.
Für automatische Erkennung leer lassen.

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Bestimme $$$\int \frac{x^{21}}{x^{2} - 4}\, dx$$$.

Lösung

Da der Grad des Zählers mindestens so groß ist wie der des Nenners, führen Sie eine Polynomdivision durch (die Schritte sind » zu sehen):

$${\color{red}{\int{\frac{x^{21}}{x^{2} - 4} d x}}} = {\color{red}{\int{\left(x^{19} + 4 x^{17} + 16 x^{15} + 64 x^{13} + 256 x^{11} + 1024 x^{9} + 4096 x^{7} + 16384 x^{5} + 65536 x^{3} + 262144 x + \frac{1048576 x}{x^{2} - 4}\right)d x}}}$$

Gliedweise integrieren:

$${\color{red}{\int{\left(x^{19} + 4 x^{17} + 16 x^{15} + 64 x^{13} + 256 x^{11} + 1024 x^{9} + 4096 x^{7} + 16384 x^{5} + 65536 x^{3} + 262144 x + \frac{1048576 x}{x^{2} - 4}\right)d x}}} = {\color{red}{\left(\int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{4 x^{17} d x} + \int{x^{19} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x}\right)}}$$

Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=19$$$ an:

$$\int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{4 x^{17} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{x^{19} d x}}}=\int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{4 x^{17} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\frac{x^{1 + 19}}{1 + 19}}}=\int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{4 x^{17} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(\frac{x^{20}}{20}\right)}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=4$$$ und $$$f{\left(x \right)} = x^{17}$$$ an:

$$\frac{x^{20}}{20} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{4 x^{17} d x}}} = \frac{x^{20}}{20} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(4 \int{x^{17} d x}\right)}}$$

Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=17$$$ an:

$$\frac{x^{20}}{20} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4 {\color{red}{\int{x^{17} d x}}}=\frac{x^{20}}{20} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4 {\color{red}{\frac{x^{1 + 17}}{1 + 17}}}=\frac{x^{20}}{20} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4 {\color{red}{\left(\frac{x^{18}}{18}\right)}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=16$$$ und $$$f{\left(x \right)} = x^{15}$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{16 x^{15} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(16 \int{x^{15} d x}\right)}}$$

Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=15$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16 {\color{red}{\int{x^{15} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16 {\color{red}{\frac{x^{1 + 15}}{1 + 15}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16 {\color{red}{\left(\frac{x^{16}}{16}\right)}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=64$$$ und $$$f{\left(x \right)} = x^{13}$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{64 x^{13} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(64 \int{x^{13} d x}\right)}}$$

Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=13$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 64 {\color{red}{\int{x^{13} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 64 {\color{red}{\frac{x^{1 + 13}}{1 + 13}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 64 {\color{red}{\left(\frac{x^{14}}{14}\right)}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=256$$$ und $$$f{\left(x \right)} = x^{11}$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{256 x^{11} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(256 \int{x^{11} d x}\right)}}$$

Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=11$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 256 {\color{red}{\int{x^{11} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 256 {\color{red}{\frac{x^{1 + 11}}{1 + 11}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 256 {\color{red}{\left(\frac{x^{12}}{12}\right)}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=1024$$$ und $$$f{\left(x \right)} = x^{9}$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{1024 x^{9} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(1024 \int{x^{9} d x}\right)}}$$

Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=9$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 1024 {\color{red}{\int{x^{9} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 1024 {\color{red}{\frac{x^{1 + 9}}{1 + 9}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 1024 {\color{red}{\left(\frac{x^{10}}{10}\right)}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=4096$$$ und $$$f{\left(x \right)} = x^{7}$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{4096 x^{7} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(4096 \int{x^{7} d x}\right)}}$$

Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=7$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4096 {\color{red}{\int{x^{7} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4096 {\color{red}{\frac{x^{1 + 7}}{1 + 7}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4096 {\color{red}{\left(\frac{x^{8}}{8}\right)}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=16384$$$ und $$$f{\left(x \right)} = x^{5}$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{16384 x^{5} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(16384 \int{x^{5} d x}\right)}}$$

Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=5$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16384 {\color{red}{\int{x^{5} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16384 {\color{red}{\frac{x^{1 + 5}}{1 + 5}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16384 {\color{red}{\left(\frac{x^{6}}{6}\right)}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=65536$$$ und $$$f{\left(x \right)} = x^{3}$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + \int{262144 x d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{65536 x^{3} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + \int{262144 x d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(65536 \int{x^{3} d x}\right)}}$$

Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=3$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + \int{262144 x d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 65536 {\color{red}{\int{x^{3} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + \int{262144 x d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 65536 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + \int{262144 x d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 65536 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=262144$$$ und $$$f{\left(x \right)} = x$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{262144 x d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(262144 \int{x d x}\right)}}$$

Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=1$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 262144 {\color{red}{\int{x d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 262144 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 262144 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Sei $$$u=x^{2} - 4$$$.

Dann $$$du=\left(x^{2} - 4\right)^{\prime }dx = 2 x dx$$$ (die Schritte sind » zu sehen), und es gilt $$$x dx = \frac{du}{2}$$$.

Also,

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + {\color{red}{\int{\frac{1048576 x}{x^{2} - 4} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + {\color{red}{\int{\frac{524288}{u} d u}}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=524288$$$ und $$$f{\left(u \right)} = \frac{1}{u}$$$ an:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + {\color{red}{\int{\frac{524288}{u} d u}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + {\color{red}{\left(524288 \int{\frac{1}{u} d u}\right)}}$$

Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Zur Erinnerung: $$$u=x^{2} - 4$$$:

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 \ln{\left(\left|{{\color{red}{\left(x^{2} - 4\right)}}}\right| \right)}$$

Daher,

$$\int{\frac{x^{21}}{x^{2} - 4} d x} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 \ln{\left(\left|{x^{2} - 4}\right| \right)}$$

Fügen Sie die Integrationskonstante hinzu:

$$\int{\frac{x^{21}}{x^{2} - 4} d x} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 \ln{\left(\left|{x^{2} - 4}\right| \right)}+C$$

Antwort

$$$\int \frac{x^{21}}{x^{2} - 4}\, dx = \left(\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 \ln\left(\left|{x^{2} - 4}\right|\right)\right) + C$$$A


Please try a new game Rotatly