Integral von $$$\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \sqrt{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx$$$.
Lösung
Sei $$$u=\sin{\left(x \right)}$$$.
Dann $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\cos{\left(x \right)} dx = du$$$.
Somit,
$${\color{red}{\int{\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\sqrt{u} d u}}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=\frac{1}{2}$$$ an:
$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
Zur Erinnerung: $$$u=\sin{\left(x \right)}$$$:
$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\sin{\left(x \right)}}}^{\frac{3}{2}}}{3}$$
Daher,
$$\int{\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = \frac{2 \sin^{\frac{3}{2}}{\left(x \right)}}{3}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = \frac{2 \sin^{\frac{3}{2}}{\left(x \right)}}{3}+C$$
Antwort
$$$\int \sqrt{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = \frac{2 \sin^{\frac{3}{2}}{\left(x \right)}}{3} + C$$$A