Integral von $$$e^{- 6 w} \sin{\left(2 w \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int e^{- 6 w} \sin{\left(2 w \right)}\, dw$$$.
Lösung
Für das Integral $$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=\sin{\left(2 w \right)}$$$ und $$$\operatorname{dv}=e^{- 6 w} dw$$$.
Dann gilt $$$\operatorname{du}=\left(\sin{\left(2 w \right)}\right)^{\prime }dw=2 \cos{\left(2 w \right)} dw$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{e^{- 6 w} d w}=- \frac{e^{- 6 w}}{6}$$$ (Rechenschritte siehe »).
Somit,
$${\color{red}{\int{e^{- 6 w} \sin{\left(2 w \right)} d w}}}={\color{red}{\left(\sin{\left(2 w \right)} \cdot \left(- \frac{e^{- 6 w}}{6}\right)-\int{\left(- \frac{e^{- 6 w}}{6}\right) \cdot 2 \cos{\left(2 w \right)} d w}\right)}}={\color{red}{\left(- \int{\left(- \frac{e^{- 6 w} \cos{\left(2 w \right)}}{3}\right)d w} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ mit $$$c=- \frac{1}{3}$$$ und $$$f{\left(w \right)} = e^{- 6 w} \cos{\left(2 w \right)}$$$ an:
$$- {\color{red}{\int{\left(- \frac{e^{- 6 w} \cos{\left(2 w \right)}}{3}\right)d w}}} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} = - {\color{red}{\left(- \frac{\int{e^{- 6 w} \cos{\left(2 w \right)} d w}}{3}\right)}} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}$$
Für das Integral $$$\int{e^{- 6 w} \cos{\left(2 w \right)} d w}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=\cos{\left(2 w \right)}$$$ und $$$\operatorname{dv}=e^{- 6 w} dw$$$.
Dann gilt $$$\operatorname{du}=\left(\cos{\left(2 w \right)}\right)^{\prime }dw=- 2 \sin{\left(2 w \right)} dw$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{e^{- 6 w} d w}=- \frac{e^{- 6 w}}{6}$$$ (Rechenschritte siehe »).
Daher,
$$\frac{{\color{red}{\int{e^{- 6 w} \cos{\left(2 w \right)} d w}}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}=\frac{{\color{red}{\left(\cos{\left(2 w \right)} \cdot \left(- \frac{e^{- 6 w}}{6}\right)-\int{\left(- \frac{e^{- 6 w}}{6}\right) \cdot \left(- 2 \sin{\left(2 w \right)}\right) d w}\right)}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}=\frac{{\color{red}{\left(- \int{\frac{e^{- 6 w} \sin{\left(2 w \right)}}{3} d w} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{6}\right)}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ mit $$$c=\frac{1}{3}$$$ und $$$f{\left(w \right)} = e^{- 6 w} \sin{\left(2 w \right)}$$$ an:
$$- \frac{{\color{red}{\int{\frac{e^{- 6 w} \sin{\left(2 w \right)}}{3} d w}}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{18} = - \frac{{\color{red}{\left(\frac{\int{e^{- 6 w} \sin{\left(2 w \right)} d w}}{3}\right)}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{18}$$
Wir sind bei einem Integral angelangt, das wir bereits gesehen haben.
Somit haben wir die folgende einfache Gleichung für das Integral erhalten:
$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = - \frac{\int{e^{- 6 w} \sin{\left(2 w \right)} d w}}{9} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{18}$$
Lösen wir es, erhalten wir, dass
$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20}$$
Daher,
$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20}+C$$
Antwort
$$$\int e^{- 6 w} \sin{\left(2 w \right)}\, dw = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20} + C$$$A