Integral von $$$x^{2} e^{3 x}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int x^{2} e^{3 x}\, dx$$$.
Lösung
Für das Integral $$$\int{x^{2} e^{3 x} d x}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=x^{2}$$$ und $$$\operatorname{dv}=e^{3 x} dx$$$.
Dann gilt $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{e^{3 x} d x}=\frac{e^{3 x}}{3}$$$ (Rechenschritte siehe »).
Daher,
$${\color{red}{\int{x^{2} e^{3 x} d x}}}={\color{red}{\left(x^{2} \cdot \frac{e^{3 x}}{3}-\int{\frac{e^{3 x}}{3} \cdot 2 x d x}\right)}}={\color{red}{\left(\frac{x^{2} e^{3 x}}{3} - \int{\frac{2 x e^{3 x}}{3} d x}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{2}{3}$$$ und $$$f{\left(x \right)} = x e^{3 x}$$$ an:
$$\frac{x^{2} e^{3 x}}{3} - {\color{red}{\int{\frac{2 x e^{3 x}}{3} d x}}} = \frac{x^{2} e^{3 x}}{3} - {\color{red}{\left(\frac{2 \int{x e^{3 x} d x}}{3}\right)}}$$
Für das Integral $$$\int{x e^{3 x} d x}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=x$$$ und $$$\operatorname{dv}=e^{3 x} dx$$$.
Dann gilt $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{e^{3 x} d x}=\frac{e^{3 x}}{3}$$$ (Rechenschritte siehe »).
Das Integral lässt sich umschreiben als
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 {\color{red}{\int{x e^{3 x} d x}}}}{3}=\frac{x^{2} e^{3 x}}{3} - \frac{2 {\color{red}{\left(x \cdot \frac{e^{3 x}}{3}-\int{\frac{e^{3 x}}{3} \cdot 1 d x}\right)}}}{3}=\frac{x^{2} e^{3 x}}{3} - \frac{2 {\color{red}{\left(\frac{x e^{3 x}}{3} - \int{\frac{e^{3 x}}{3} d x}\right)}}}{3}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{3}$$$ und $$$f{\left(x \right)} = e^{3 x}$$$ an:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{\frac{e^{3 x}}{3} d x}}}}{3} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\left(\frac{\int{e^{3 x} d x}}{3}\right)}}}{3}$$
Sei $$$u=3 x$$$.
Dann $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{3}$$$.
Also,
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{e^{3 x} d x}}}}{9} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{\frac{e^{u}}{3} d u}}}}{9}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{3}$$$ und $$$f{\left(u \right)} = e^{u}$$$ an:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{\frac{e^{u}}{3} d u}}}}{9} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\left(\frac{\int{e^{u} d u}}{3}\right)}}}{9}$$
Das Integral der Exponentialfunktion lautet $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{e^{u} d u}}}}{27} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{e^{u}}}}{27}$$
Zur Erinnerung: $$$u=3 x$$$:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 e^{{\color{red}{u}}}}{27} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 e^{{\color{red}{\left(3 x\right)}}}}{27}$$
Daher,
$$\int{x^{2} e^{3 x} d x} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 e^{3 x}}{27}$$
Vereinfachen:
$$\int{x^{2} e^{3 x} d x} = \frac{\left(9 x^{2} - 6 x + 2\right) e^{3 x}}{27}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{x^{2} e^{3 x} d x} = \frac{\left(9 x^{2} - 6 x + 2\right) e^{3 x}}{27}+C$$
Antwort
$$$\int x^{2} e^{3 x}\, dx = \frac{\left(9 x^{2} - 6 x + 2\right) e^{3 x}}{27} + C$$$A