Integral von $$$\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)\, dt$$$.
Lösung
Gliedweise integrieren:
$${\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)d t}}} = {\color{red}{\left(\int{\frac{1}{2} d t} - \int{\frac{\cos{\left(6 t \right)}}{2} d t}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, dt = c t$$$ mit $$$c=\frac{1}{2}$$$ an:
$$- \int{\frac{\cos{\left(6 t \right)}}{2} d t} + {\color{red}{\int{\frac{1}{2} d t}}} = - \int{\frac{\cos{\left(6 t \right)}}{2} d t} + {\color{red}{\left(\frac{t}{2}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(t \right)} = \cos{\left(6 t \right)}$$$ an:
$$\frac{t}{2} - {\color{red}{\int{\frac{\cos{\left(6 t \right)}}{2} d t}}} = \frac{t}{2} - {\color{red}{\left(\frac{\int{\cos{\left(6 t \right)} d t}}{2}\right)}}$$
Sei $$$u=6 t$$$.
Dann $$$du=\left(6 t\right)^{\prime }dt = 6 dt$$$ (die Schritte sind » zu sehen), und es gilt $$$dt = \frac{du}{6}$$$.
Also,
$$\frac{t}{2} - \frac{{\color{red}{\int{\cos{\left(6 t \right)} d t}}}}{2} = \frac{t}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{6}$$$ und $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ an:
$$\frac{t}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{2} = \frac{t}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{2}$$
Das Integral des Kosinus ist $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{t}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{12} = \frac{t}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{12}$$
Zur Erinnerung: $$$u=6 t$$$:
$$\frac{t}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{12} = \frac{t}{2} - \frac{\sin{\left({\color{red}{\left(6 t\right)}} \right)}}{12}$$
Daher,
$$\int{\left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)d t} = \frac{t}{2} - \frac{\sin{\left(6 t \right)}}{12}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)d t} = \frac{t}{2} - \frac{\sin{\left(6 t \right)}}{12}+C$$
Antwort
$$$\int \left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)\, dt = \left(\frac{t}{2} - \frac{\sin{\left(6 t \right)}}{12}\right) + C$$$A