Integral von $$$\left(\frac{x}{2} - 3\right)^{5}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(\frac{x}{2} - 3\right)^{5}\, dx$$$.
Lösung
Sei $$$u=\frac{x}{2} - 3$$$.
Dann $$$du=\left(\frac{x}{2} - 3\right)^{\prime }dx = \frac{dx}{2}$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = 2 du$$$.
Das Integral wird zu
$${\color{red}{\int{\left(\frac{x}{2} - 3\right)^{5} d x}}} = {\color{red}{\int{2 u^{5} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=2$$$ und $$$f{\left(u \right)} = u^{5}$$$ an:
$${\color{red}{\int{2 u^{5} d u}}} = {\color{red}{\left(2 \int{u^{5} d u}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=5$$$ an:
$$2 {\color{red}{\int{u^{5} d u}}}=2 {\color{red}{\frac{u^{1 + 5}}{1 + 5}}}=2 {\color{red}{\left(\frac{u^{6}}{6}\right)}}$$
Zur Erinnerung: $$$u=\frac{x}{2} - 3$$$:
$$\frac{{\color{red}{u}}^{6}}{3} = \frac{{\color{red}{\left(\frac{x}{2} - 3\right)}}^{6}}{3}$$
Daher,
$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(\frac{x}{2} - 3\right)^{6}}{3}$$
Vereinfachen:
$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(x - 6\right)^{6}}{192}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(x - 6\right)^{6}}{192}+C$$
Antwort
$$$\int \left(\frac{x}{2} - 3\right)^{5}\, dx = \frac{\left(x - 6\right)^{6}}{192} + C$$$A