Integral von $$$\left(20 - 5 x\right)^{2}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(20 - 5 x\right)^{2}\, dx$$$.
Lösung
Sei $$$u=20 - 5 x$$$.
Dann $$$du=\left(20 - 5 x\right)^{\prime }dx = - 5 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = - \frac{du}{5}$$$.
Daher,
$${\color{red}{\int{\left(20 - 5 x\right)^{2} d x}}} = {\color{red}{\int{\left(- \frac{u^{2}}{5}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=- \frac{1}{5}$$$ und $$$f{\left(u \right)} = u^{2}$$$ an:
$${\color{red}{\int{\left(- \frac{u^{2}}{5}\right)d u}}} = {\color{red}{\left(- \frac{\int{u^{2} d u}}{5}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=2$$$ an:
$$- \frac{{\color{red}{\int{u^{2} d u}}}}{5}=- \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{5}=- \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{5}$$
Zur Erinnerung: $$$u=20 - 5 x$$$:
$$- \frac{{\color{red}{u}}^{3}}{15} = - \frac{{\color{red}{\left(20 - 5 x\right)}}^{3}}{15}$$
Daher,
$$\int{\left(20 - 5 x\right)^{2} d x} = - \frac{\left(20 - 5 x\right)^{3}}{15}$$
Vereinfachen:
$$\int{\left(20 - 5 x\right)^{2} d x} = \frac{25 \left(x - 4\right)^{3}}{3}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(20 - 5 x\right)^{2} d x} = \frac{25 \left(x - 4\right)^{3}}{3}+C$$
Antwort
$$$\int \left(20 - 5 x\right)^{2}\, dx = \frac{25 \left(x - 4\right)^{3}}{3} + C$$$A