Integral von $$$\left(\frac{x}{8} - 2\right)^{3}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(\frac{x}{8} - 2\right)^{3}\, dx$$$.
Lösung
Sei $$$u=\frac{x}{8} - 2$$$.
Dann $$$du=\left(\frac{x}{8} - 2\right)^{\prime }dx = \frac{dx}{8}$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = 8 du$$$.
Das Integral lässt sich umschreiben als
$${\color{red}{\int{\left(\frac{x}{8} - 2\right)^{3} d x}}} = {\color{red}{\int{8 u^{3} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=8$$$ und $$$f{\left(u \right)} = u^{3}$$$ an:
$${\color{red}{\int{8 u^{3} d u}}} = {\color{red}{\left(8 \int{u^{3} d u}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=3$$$ an:
$$8 {\color{red}{\int{u^{3} d u}}}=8 {\color{red}{\frac{u^{1 + 3}}{1 + 3}}}=8 {\color{red}{\left(\frac{u^{4}}{4}\right)}}$$
Zur Erinnerung: $$$u=\frac{x}{8} - 2$$$:
$$2 {\color{red}{u}}^{4} = 2 {\color{red}{\left(\frac{x}{8} - 2\right)}}^{4}$$
Daher,
$$\int{\left(\frac{x}{8} - 2\right)^{3} d x} = 2 \left(\frac{x}{8} - 2\right)^{4}$$
Vereinfachen:
$$\int{\left(\frac{x}{8} - 2\right)^{3} d x} = \frac{\left(x - 16\right)^{4}}{2048}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(\frac{x}{8} - 2\right)^{3} d x} = \frac{\left(x - 16\right)^{4}}{2048}+C$$
Antwort
$$$\int \left(\frac{x}{8} - 2\right)^{3}\, dx = \frac{\left(x - 16\right)^{4}}{2048} + C$$$A