Integral von $$$\cot^{2}{\left(\theta \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \cot^{2}{\left(\theta \right)}\, d\theta$$$.
Lösung
Sei $$$u=\cot{\left(\theta \right)}$$$.
Dann $$$du=\left(\cot{\left(\theta \right)}\right)^{\prime }d\theta = - \csc^{2}{\left(\theta \right)} d\theta$$$ (die Schritte sind » zu sehen), und es gilt $$$\csc^{2}{\left(\theta \right)} d\theta = - du$$$.
Also,
$${\color{red}{\int{\cot^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=-1$$$ und $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$ an:
$${\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$
Forme den Bruch um und zerlege ihn:
$$- {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
Gliedweise integrieren:
$$- {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, du = c u$$$ mit $$$c=1$$$ an:
$$\int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$
Das Integral von $$$\frac{1}{u^{2} + 1}$$$ ist $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- u + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Zur Erinnerung: $$$u=\cot{\left(\theta \right)}$$$:
$$\operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = \operatorname{atan}{\left({\color{red}{\cot{\left(\theta \right)}}} \right)} - {\color{red}{\cot{\left(\theta \right)}}}$$
Daher,
$$\int{\cot^{2}{\left(\theta \right)} d \theta} = - \cot{\left(\theta \right)} + \operatorname{atan}{\left(\cot{\left(\theta \right)} \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\cot^{2}{\left(\theta \right)} d \theta} = - \cot{\left(\theta \right)} + \operatorname{atan}{\left(\cot{\left(\theta \right)} \right)}+C$$
Antwort
$$$\int \cot^{2}{\left(\theta \right)}\, d\theta = \left(- \cot{\left(\theta \right)} + \operatorname{atan}{\left(\cot{\left(\theta \right)} \right)}\right) + C$$$A