Integral von $$$\frac{x^{5} - 4}{x^{22}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{x^{5} - 4}{x^{22}}\, dx$$$.
Lösung
Expand the expression:
$${\color{red}{\int{\frac{x^{5} - 4}{x^{22}} d x}}} = {\color{red}{\int{\left(\frac{1}{x^{17}} - \frac{4}{x^{22}}\right)d x}}}$$
Gliedweise integrieren:
$${\color{red}{\int{\left(\frac{1}{x^{17}} - \frac{4}{x^{22}}\right)d x}}} = {\color{red}{\left(- \int{\frac{4}{x^{22}} d x} + \int{\frac{1}{x^{17}} d x}\right)}}$$
Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=-17$$$ an:
$$- \int{\frac{4}{x^{22}} d x} + {\color{red}{\int{\frac{1}{x^{17}} d x}}}=- \int{\frac{4}{x^{22}} d x} + {\color{red}{\int{x^{-17} d x}}}=- \int{\frac{4}{x^{22}} d x} + {\color{red}{\frac{x^{-17 + 1}}{-17 + 1}}}=- \int{\frac{4}{x^{22}} d x} + {\color{red}{\left(- \frac{x^{-16}}{16}\right)}}=- \int{\frac{4}{x^{22}} d x} + {\color{red}{\left(- \frac{1}{16 x^{16}}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=4$$$ und $$$f{\left(x \right)} = \frac{1}{x^{22}}$$$ an:
$$- {\color{red}{\int{\frac{4}{x^{22}} d x}}} - \frac{1}{16 x^{16}} = - {\color{red}{\left(4 \int{\frac{1}{x^{22}} d x}\right)}} - \frac{1}{16 x^{16}}$$
Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=-22$$$ an:
$$- 4 {\color{red}{\int{\frac{1}{x^{22}} d x}}} - \frac{1}{16 x^{16}}=- 4 {\color{red}{\int{x^{-22} d x}}} - \frac{1}{16 x^{16}}=- 4 {\color{red}{\frac{x^{-22 + 1}}{-22 + 1}}} - \frac{1}{16 x^{16}}=- 4 {\color{red}{\left(- \frac{x^{-21}}{21}\right)}} - \frac{1}{16 x^{16}}=- 4 {\color{red}{\left(- \frac{1}{21 x^{21}}\right)}} - \frac{1}{16 x^{16}}$$
Daher,
$$\int{\frac{x^{5} - 4}{x^{22}} d x} = - \frac{1}{16 x^{16}} + \frac{4}{21 x^{21}}$$
Vereinfachen:
$$\int{\frac{x^{5} - 4}{x^{22}} d x} = \frac{64 - 21 x^{5}}{336 x^{21}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{x^{5} - 4}{x^{22}} d x} = \frac{64 - 21 x^{5}}{336 x^{21}}+C$$
Antwort
$$$\int \frac{x^{5} - 4}{x^{22}}\, dx = \frac{64 - 21 x^{5}}{336 x^{21}} + C$$$A