Rechner für bestimmte und uneigentliche Integrale

Bestimmte und uneigentliche Integrale Schritt für Schritt berechnen

Der Rechner versucht, bestimmte Integrale (d. h. mit Grenzen), einschließlich uneigentlicher Integrale, auszuwerten und zeigt dabei die Lösungsschritte.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{\frac{1}{3}}^{\frac{1}{2}}\left( -6 + \frac{1}{t^{3}} \right)dt$$$

First, calculate the corresponding indefinite integral: $$$\int{\left(-6 + \frac{1}{t^{3}}\right)d t}=- 6 t - \frac{1}{2 t^{2}}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(- 6 t - \frac{1}{2 t^{2}}\right)|_{\left(t=\frac{1}{2}\right)}=-5$$$

$$$\left(- 6 t - \frac{1}{2 t^{2}}\right)|_{\left(t=\frac{1}{3}\right)}=- \frac{13}{2}$$$

$$$\int_{\frac{1}{3}}^{\frac{1}{2}}\left( -6 + \frac{1}{t^{3}} \right)dt=\left(- 6 t - \frac{1}{2 t^{2}}\right)|_{\left(t=\frac{1}{2}\right)}-\left(- 6 t - \frac{1}{2 t^{2}}\right)|_{\left(t=\frac{1}{3}\right)}=\frac{3}{2}$$$

Answer: $$$\int_{\frac{1}{3}}^{\frac{1}{2}}\left( -6 + \frac{1}{t^{3}} \right)dt=\frac{3}{2}=1.5$$$


Please try a new game Rotatly