Rechner für bestimmte und uneigentliche Integrale
Bestimmte und uneigentliche Integrale Schritt für Schritt berechnen
Der Rechner versucht, bestimmte Integrale (d. h. mit Grenzen), einschließlich uneigentlicher Integrale, auszuwerten und zeigt dabei die Lösungsschritte.
Solution
Your input: calculate $$$\int_{-\infty}^{3}\left( \frac{\ln{\left(x \right)}}{x} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{\ln{\left(x \right)}}{x} d x}=\frac{\ln{\left(\left|{x}\right| \right)}^{2}}{2}$$$ (for steps, see indefinite integral calculator)
Since there is infinity in the lower bound, this is an improper integral of type 1.
To evaluate an integral over an interval, we use the Fundamental Theorem of Calculus. However, we need to use limit if an endpoint of the interval is special (infinite).
$$$\int_{-\infty}^{3}\left( \frac{\ln{\left(x \right)}}{x} \right)dx=\left(\frac{\ln{\left(\left|{x}\right| \right)}^{2}}{2}\right)|_{\left(x=3\right)}-\lim_{x \to -\infty}\left(\frac{\ln{\left(\left|{x}\right| \right)}^{2}}{2}\right)=-\infty$$$
Since the value of the integral is not finite, then it is divergent.
Answer: the integral is divergent.