Integral of $$$x^{5} e^{- x^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{5} e^{- x^{2}}\, dx$$$.
Solution
Let $$$u=- x^{2}$$$.
Then $$$du=\left(- x^{2}\right)^{\prime }dx = - 2 x dx$$$ (steps can be seen »), and we have that $$$x dx = - \frac{du}{2}$$$.
The integral becomes
$${\color{red}{\int{x^{5} e^{- x^{2}} d x}}} = {\color{red}{\int{\left(- \frac{u^{2} e^{u}}{2}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=- \frac{1}{2}$$$ and $$$f{\left(u \right)} = u^{2} e^{u}$$$:
$${\color{red}{\int{\left(- \frac{u^{2} e^{u}}{2}\right)d u}}} = {\color{red}{\left(- \frac{\int{u^{2} e^{u} d u}}{2}\right)}}$$
For the integral $$$\int{u^{2} e^{u} d u}$$$, use integration by parts $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$.
Let $$$\operatorname{c}=u^{2}$$$ and $$$\operatorname{dv}=e^{u} du$$$.
Then $$$\operatorname{dc}=\left(u^{2}\right)^{\prime }du=2 u du$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (steps can be seen »).
The integral becomes
$$- \frac{{\color{red}{\int{u^{2} e^{u} d u}}}}{2}=- \frac{{\color{red}{\left(u^{2} \cdot e^{u}-\int{e^{u} \cdot 2 u d u}\right)}}}{2}=- \frac{{\color{red}{\left(u^{2} e^{u} - \int{2 u e^{u} d u}\right)}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = u e^{u}$$$:
$$- \frac{u^{2} e^{u}}{2} + \frac{{\color{red}{\int{2 u e^{u} d u}}}}{2} = - \frac{u^{2} e^{u}}{2} + \frac{{\color{red}{\left(2 \int{u e^{u} d u}\right)}}}{2}$$
For the integral $$$\int{u e^{u} d u}$$$, use integration by parts $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$.
Let $$$\operatorname{c}=u$$$ and $$$\operatorname{dv}=e^{u} du$$$.
Then $$$\operatorname{dc}=\left(u\right)^{\prime }du=1 du$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (steps can be seen »).
The integral can be rewritten as
$$- \frac{u^{2} e^{u}}{2} + {\color{red}{\int{u e^{u} d u}}}=- \frac{u^{2} e^{u}}{2} + {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=- \frac{u^{2} e^{u}}{2} + {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{u^{2} e^{u}}{2} + u e^{u} - {\color{red}{\int{e^{u} d u}}} = - \frac{u^{2} e^{u}}{2} + u e^{u} - {\color{red}{e^{u}}}$$
Recall that $$$u=- x^{2}$$$:
$$- e^{{\color{red}{u}}} + {\color{red}{u}} e^{{\color{red}{u}}} - \frac{{\color{red}{u}}^{2} e^{{\color{red}{u}}}}{2} = - e^{{\color{red}{\left(- x^{2}\right)}}} + {\color{red}{\left(- x^{2}\right)}} e^{{\color{red}{\left(- x^{2}\right)}}} - \frac{{\color{red}{\left(- x^{2}\right)}}^{2} e^{{\color{red}{\left(- x^{2}\right)}}}}{2}$$
Therefore,
$$\int{x^{5} e^{- x^{2}} d x} = - \frac{x^{4} e^{- x^{2}}}{2} - x^{2} e^{- x^{2}} - e^{- x^{2}}$$
Simplify:
$$\int{x^{5} e^{- x^{2}} d x} = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}}$$
Add the constant of integration:
$$\int{x^{5} e^{- x^{2}} d x} = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}}+C$$
Answer
$$$\int x^{5} e^{- x^{2}}\, dx = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}} + C$$$A