$$$x^{5} e^{- x^{2}}$$$의 적분
사용자 입력
$$$\int x^{5} e^{- x^{2}}\, dx$$$을(를) 구하시오.
풀이
$$$u=- x^{2}$$$라 하자.
그러면 $$$du=\left(- x^{2}\right)^{\prime }dx = - 2 x dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$x dx = - \frac{du}{2}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{x^{5} e^{- x^{2}} d x}}} = {\color{red}{\int{\left(- \frac{u^{2} e^{u}}{2}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=- \frac{1}{2}$$$와 $$$f{\left(u \right)} = u^{2} e^{u}$$$에 적용하세요:
$${\color{red}{\int{\left(- \frac{u^{2} e^{u}}{2}\right)d u}}} = {\color{red}{\left(- \frac{\int{u^{2} e^{u} d u}}{2}\right)}}$$
적분 $$$\int{u^{2} e^{u} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$을 사용하십시오.
$$$\operatorname{g}=u^{2}$$$와 $$$\operatorname{dv}=e^{u} du$$$라고 하자.
그러면 $$$\operatorname{dg}=\left(u^{2}\right)^{\prime }du=2 u du$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$- \frac{{\color{red}{\int{u^{2} e^{u} d u}}}}{2}=- \frac{{\color{red}{\left(u^{2} \cdot e^{u}-\int{e^{u} \cdot 2 u d u}\right)}}}{2}=- \frac{{\color{red}{\left(u^{2} e^{u} - \int{2 u e^{u} d u}\right)}}}{2}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=2$$$와 $$$f{\left(u \right)} = u e^{u}$$$에 적용하세요:
$$- \frac{u^{2} e^{u}}{2} + \frac{{\color{red}{\int{2 u e^{u} d u}}}}{2} = - \frac{u^{2} e^{u}}{2} + \frac{{\color{red}{\left(2 \int{u e^{u} d u}\right)}}}{2}$$
적분 $$$\int{u e^{u} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$을 사용하십시오.
$$$\operatorname{g}=u$$$와 $$$\operatorname{dv}=e^{u} du$$$라고 하자.
그러면 $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$- \frac{u^{2} e^{u}}{2} + {\color{red}{\int{u e^{u} d u}}}=- \frac{u^{2} e^{u}}{2} + {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=- \frac{u^{2} e^{u}}{2} + {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$
지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:
$$- \frac{u^{2} e^{u}}{2} + u e^{u} - {\color{red}{\int{e^{u} d u}}} = - \frac{u^{2} e^{u}}{2} + u e^{u} - {\color{red}{e^{u}}}$$
다음 $$$u=- x^{2}$$$을 기억하라:
$$- e^{{\color{red}{u}}} + {\color{red}{u}} e^{{\color{red}{u}}} - \frac{{\color{red}{u}}^{2} e^{{\color{red}{u}}}}{2} = - e^{{\color{red}{\left(- x^{2}\right)}}} + {\color{red}{\left(- x^{2}\right)}} e^{{\color{red}{\left(- x^{2}\right)}}} - \frac{{\color{red}{\left(- x^{2}\right)}}^{2} e^{{\color{red}{\left(- x^{2}\right)}}}}{2}$$
따라서,
$$\int{x^{5} e^{- x^{2}} d x} = - \frac{x^{4} e^{- x^{2}}}{2} - x^{2} e^{- x^{2}} - e^{- x^{2}}$$
간단히 하시오:
$$\int{x^{5} e^{- x^{2}} d x} = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}}$$
적분 상수를 추가하세요:
$$\int{x^{5} e^{- x^{2}} d x} = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}}+C$$
정답
$$$\int x^{5} e^{- x^{2}}\, dx = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}} + C$$$A