$$$x^{5} e^{- x^{2}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$x^{5} e^{- x^{2}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int x^{5} e^{- x^{2}}\, dx$$$을(를) 구하시오.

풀이

$$$u=- x^{2}$$$라 하자.

그러면 $$$du=\left(- x^{2}\right)^{\prime }dx = - 2 x dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$x dx = - \frac{du}{2}$$$임을 얻습니다.

따라서,

$${\color{red}{\int{x^{5} e^{- x^{2}} d x}}} = {\color{red}{\int{\left(- \frac{u^{2} e^{u}}{2}\right)d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=- \frac{1}{2}$$$$$$f{\left(u \right)} = u^{2} e^{u}$$$에 적용하세요:

$${\color{red}{\int{\left(- \frac{u^{2} e^{u}}{2}\right)d u}}} = {\color{red}{\left(- \frac{\int{u^{2} e^{u} d u}}{2}\right)}}$$

적분 $$$\int{u^{2} e^{u} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$을 사용하십시오.

$$$\operatorname{g}=u^{2}$$$$$$\operatorname{dv}=e^{u} du$$$라고 하자.

그러면 $$$\operatorname{dg}=\left(u^{2}\right)^{\prime }du=2 u du$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (»에서 풀이 과정을 볼 수 있음).

따라서,

$$- \frac{{\color{red}{\int{u^{2} e^{u} d u}}}}{2}=- \frac{{\color{red}{\left(u^{2} \cdot e^{u}-\int{e^{u} \cdot 2 u d u}\right)}}}{2}=- \frac{{\color{red}{\left(u^{2} e^{u} - \int{2 u e^{u} d u}\right)}}}{2}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=2$$$$$$f{\left(u \right)} = u e^{u}$$$에 적용하세요:

$$- \frac{u^{2} e^{u}}{2} + \frac{{\color{red}{\int{2 u e^{u} d u}}}}{2} = - \frac{u^{2} e^{u}}{2} + \frac{{\color{red}{\left(2 \int{u e^{u} d u}\right)}}}{2}$$

적분 $$$\int{u e^{u} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$을 사용하십시오.

$$$\operatorname{g}=u$$$$$$\operatorname{dv}=e^{u} du$$$라고 하자.

그러면 $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (»에서 풀이 과정을 볼 수 있음).

따라서,

$$- \frac{u^{2} e^{u}}{2} + {\color{red}{\int{u e^{u} d u}}}=- \frac{u^{2} e^{u}}{2} + {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=- \frac{u^{2} e^{u}}{2} + {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$

지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:

$$- \frac{u^{2} e^{u}}{2} + u e^{u} - {\color{red}{\int{e^{u} d u}}} = - \frac{u^{2} e^{u}}{2} + u e^{u} - {\color{red}{e^{u}}}$$

다음 $$$u=- x^{2}$$$을 기억하라:

$$- e^{{\color{red}{u}}} + {\color{red}{u}} e^{{\color{red}{u}}} - \frac{{\color{red}{u}}^{2} e^{{\color{red}{u}}}}{2} = - e^{{\color{red}{\left(- x^{2}\right)}}} + {\color{red}{\left(- x^{2}\right)}} e^{{\color{red}{\left(- x^{2}\right)}}} - \frac{{\color{red}{\left(- x^{2}\right)}}^{2} e^{{\color{red}{\left(- x^{2}\right)}}}}{2}$$

따라서,

$$\int{x^{5} e^{- x^{2}} d x} = - \frac{x^{4} e^{- x^{2}}}{2} - x^{2} e^{- x^{2}} - e^{- x^{2}}$$

간단히 하시오:

$$\int{x^{5} e^{- x^{2}} d x} = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}}$$

적분 상수를 추가하세요:

$$\int{x^{5} e^{- x^{2}} d x} = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}}+C$$

정답

$$$\int x^{5} e^{- x^{2}}\, dx = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}} + C$$$A


Please try a new game Rotatly