$$$x^{5} e^{- x^{2}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int x^{5} e^{- x^{2}}\, dx$$$.
Çözüm
$$$u=- x^{2}$$$ olsun.
Böylece $$$du=\left(- x^{2}\right)^{\prime }dx = - 2 x dx$$$ (adımlar » görülebilir) ve $$$x dx = - \frac{du}{2}$$$ elde ederiz.
Dolayısıyla,
$${\color{red}{\int{x^{5} e^{- x^{2}} d x}}} = {\color{red}{\int{\left(- \frac{u^{2} e^{u}}{2}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=- \frac{1}{2}$$$ ve $$$f{\left(u \right)} = u^{2} e^{u}$$$ ile uygula:
$${\color{red}{\int{\left(- \frac{u^{2} e^{u}}{2}\right)d u}}} = {\color{red}{\left(- \frac{\int{u^{2} e^{u} d u}}{2}\right)}}$$
$$$\int{u^{2} e^{u} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$ kullanın.
$$$\operatorname{g}=u^{2}$$$ ve $$$\operatorname{dv}=e^{u} du$$$ olsun.
O halde $$$\operatorname{dg}=\left(u^{2}\right)^{\prime }du=2 u du$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (adımlar için bkz. »).
İntegral şu şekilde yeniden yazılabilir:
$$- \frac{{\color{red}{\int{u^{2} e^{u} d u}}}}{2}=- \frac{{\color{red}{\left(u^{2} \cdot e^{u}-\int{e^{u} \cdot 2 u d u}\right)}}}{2}=- \frac{{\color{red}{\left(u^{2} e^{u} - \int{2 u e^{u} d u}\right)}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = u e^{u}$$$ ile uygula:
$$- \frac{u^{2} e^{u}}{2} + \frac{{\color{red}{\int{2 u e^{u} d u}}}}{2} = - \frac{u^{2} e^{u}}{2} + \frac{{\color{red}{\left(2 \int{u e^{u} d u}\right)}}}{2}$$
$$$\int{u e^{u} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$ kullanın.
$$$\operatorname{g}=u$$$ ve $$$\operatorname{dv}=e^{u} du$$$ olsun.
O halde $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (adımlar için bkz. »).
İntegral şu şekilde yeniden yazılabilir:
$$- \frac{u^{2} e^{u}}{2} + {\color{red}{\int{u e^{u} d u}}}=- \frac{u^{2} e^{u}}{2} + {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=- \frac{u^{2} e^{u}}{2} + {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$
Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{u^{2} e^{u}}{2} + u e^{u} - {\color{red}{\int{e^{u} d u}}} = - \frac{u^{2} e^{u}}{2} + u e^{u} - {\color{red}{e^{u}}}$$
Hatırlayın ki $$$u=- x^{2}$$$:
$$- e^{{\color{red}{u}}} + {\color{red}{u}} e^{{\color{red}{u}}} - \frac{{\color{red}{u}}^{2} e^{{\color{red}{u}}}}{2} = - e^{{\color{red}{\left(- x^{2}\right)}}} + {\color{red}{\left(- x^{2}\right)}} e^{{\color{red}{\left(- x^{2}\right)}}} - \frac{{\color{red}{\left(- x^{2}\right)}}^{2} e^{{\color{red}{\left(- x^{2}\right)}}}}{2}$$
Dolayısıyla,
$$\int{x^{5} e^{- x^{2}} d x} = - \frac{x^{4} e^{- x^{2}}}{2} - x^{2} e^{- x^{2}} - e^{- x^{2}}$$
Sadeleştirin:
$$\int{x^{5} e^{- x^{2}} d x} = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}}$$
İntegrasyon sabitini ekleyin:
$$\int{x^{5} e^{- x^{2}} d x} = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}}+C$$
Cevap
$$$\int x^{5} e^{- x^{2}}\, dx = \left(- \frac{x^{4}}{2} - x^{2} - 1\right) e^{- x^{2}} + C$$$A