Integral of $$$\frac{e^{- x^{2}}}{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{e^{- x^{2}}}{2}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = e^{- x^{2}}$$$:
$${\color{red}{\int{\frac{e^{- x^{2}}}{2} d x}}} = {\color{red}{\left(\frac{\int{e^{- x^{2}} d x}}{2}\right)}}$$
This integral (Error Function) does not have a closed form:
$$\frac{{\color{red}{\int{e^{- x^{2}} d x}}}}{2} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}}{2}$$
Therefore,
$$\int{\frac{e^{- x^{2}}}{2} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{4}$$
Add the constant of integration:
$$\int{\frac{e^{- x^{2}}}{2} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{4}+C$$
Answer
$$$\int \frac{e^{- x^{2}}}{2}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{4} + C$$$A