Integral of $$$\frac{e^{- x^{2}}}{2}$$$

The calculator will find the integral/antiderivative of $$$\frac{e^{- x^{2}}}{2}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{e^{- x^{2}}}{2}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = e^{- x^{2}}$$$:

$${\color{red}{\int{\frac{e^{- x^{2}}}{2} d x}}} = {\color{red}{\left(\frac{\int{e^{- x^{2}} d x}}{2}\right)}}$$

This integral (Error Function) does not have a closed form:

$$\frac{{\color{red}{\int{e^{- x^{2}} d x}}}}{2} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}}{2}$$

Therefore,

$$\int{\frac{e^{- x^{2}}}{2} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{4}$$

Add the constant of integration:

$$\int{\frac{e^{- x^{2}}}{2} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{4}+C$$

Answer

$$$\int \frac{e^{- x^{2}}}{2}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{4} + C$$$A


Please try a new game Rotatly