Integral of $$$e^{- \frac{y}{t}}$$$ with respect to $$$y$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{- \frac{y}{t}}\, dy$$$.
Solution
Let $$$u=- \frac{y}{t}$$$.
Then $$$du=\left(- \frac{y}{t}\right)^{\prime }dy = - \frac{1}{t} dy$$$ (steps can be seen »), and we have that $$$dy = - t du$$$.
So,
$${\color{red}{\int{e^{- \frac{y}{t}} d y}}} = {\color{red}{\int{\left(- t e^{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=- t$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- t e^{u}\right)d u}}} = {\color{red}{\left(- t \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$- t {\color{red}{\int{e^{u} d u}}} = - t {\color{red}{e^{u}}}$$
Recall that $$$u=- \frac{y}{t}$$$:
$$- t e^{{\color{red}{u}}} = - t e^{{\color{red}{\left(- \frac{y}{t}\right)}}}$$
Therefore,
$$\int{e^{- \frac{y}{t}} d y} = - t e^{- \frac{y}{t}}$$
Add the constant of integration:
$$\int{e^{- \frac{y}{t}} d y} = - t e^{- \frac{y}{t}}+C$$
Answer
$$$\int e^{- \frac{y}{t}}\, dy = - t e^{- \frac{y}{t}} + C$$$A