Integral of $$$e^{\frac{x}{4}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{\frac{x}{4}}\, dx$$$.
Solution
Let $$$u=\frac{x}{4}$$$.
Then $$$du=\left(\frac{x}{4}\right)^{\prime }dx = \frac{dx}{4}$$$ (steps can be seen »), and we have that $$$dx = 4 du$$$.
The integral can be rewritten as
$${\color{red}{\int{e^{\frac{x}{4}} d x}}} = {\color{red}{\int{4 e^{u} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=4$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{4 e^{u} d u}}} = {\color{red}{\left(4 \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$4 {\color{red}{\int{e^{u} d u}}} = 4 {\color{red}{e^{u}}}$$
Recall that $$$u=\frac{x}{4}$$$:
$$4 e^{{\color{red}{u}}} = 4 e^{{\color{red}{\left(\frac{x}{4}\right)}}}$$
Therefore,
$$\int{e^{\frac{x}{4}} d x} = 4 e^{\frac{x}{4}}$$
Add the constant of integration:
$$\int{e^{\frac{x}{4}} d x} = 4 e^{\frac{x}{4}}+C$$
Answer
$$$\int e^{\frac{x}{4}}\, dx = 4 e^{\frac{x}{4}} + C$$$A