Integral of $$$5 y^{2} \cos{\left(x \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 5 y^{2} \cos{\left(x \right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=5 y^{2}$$$ and $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{5 y^{2} \cos{\left(x \right)} d x}}} = {\color{red}{\left(5 y^{2} \int{\cos{\left(x \right)} d x}\right)}}$$
The integral of the cosine is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$5 y^{2} {\color{red}{\int{\cos{\left(x \right)} d x}}} = 5 y^{2} {\color{red}{\sin{\left(x \right)}}}$$
Therefore,
$$\int{5 y^{2} \cos{\left(x \right)} d x} = 5 y^{2} \sin{\left(x \right)}$$
Add the constant of integration:
$$\int{5 y^{2} \cos{\left(x \right)} d x} = 5 y^{2} \sin{\left(x \right)}+C$$
Answer
$$$\int 5 y^{2} \cos{\left(x \right)}\, dx = 5 y^{2} \sin{\left(x \right)} + C$$$A