$$$5 y^{2} \cos{\left(x \right)}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int 5 y^{2} \cos{\left(x \right)}\, dx$$$。
解答
对 $$$c=5 y^{2}$$$ 和 $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{5 y^{2} \cos{\left(x \right)} d x}}} = {\color{red}{\left(5 y^{2} \int{\cos{\left(x \right)} d x}\right)}}$$
余弦函数的积分为 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$5 y^{2} {\color{red}{\int{\cos{\left(x \right)} d x}}} = 5 y^{2} {\color{red}{\sin{\left(x \right)}}}$$
因此,
$$\int{5 y^{2} \cos{\left(x \right)} d x} = 5 y^{2} \sin{\left(x \right)}$$
加上积分常数:
$$\int{5 y^{2} \cos{\left(x \right)} d x} = 5 y^{2} \sin{\left(x \right)}+C$$
答案
$$$\int 5 y^{2} \cos{\left(x \right)}\, dx = 5 y^{2} \sin{\left(x \right)} + C$$$A
Please try a new game Rotatly