$$$5 y^{2} \cos{\left(x \right)}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int 5 y^{2} \cos{\left(x \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=5 y^{2}$$$ 與 $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{5 y^{2} \cos{\left(x \right)} d x}}} = {\color{red}{\left(5 y^{2} \int{\cos{\left(x \right)} d x}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$5 y^{2} {\color{red}{\int{\cos{\left(x \right)} d x}}} = 5 y^{2} {\color{red}{\sin{\left(x \right)}}}$$
因此,
$$\int{5 y^{2} \cos{\left(x \right)} d x} = 5 y^{2} \sin{\left(x \right)}$$
加上積分常數:
$$\int{5 y^{2} \cos{\left(x \right)} d x} = 5 y^{2} \sin{\left(x \right)}+C$$
答案
$$$\int 5 y^{2} \cos{\left(x \right)}\, dx = 5 y^{2} \sin{\left(x \right)} + C$$$A
Please try a new game Rotatly