$$$5 y^{2} \cos{\left(x \right)}$$$ の $$$x$$$ に関する積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int 5 y^{2} \cos{\left(x \right)}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=5 y^{2}$$$ と $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ に対して適用する:
$${\color{red}{\int{5 y^{2} \cos{\left(x \right)} d x}}} = {\color{red}{\left(5 y^{2} \int{\cos{\left(x \right)} d x}\right)}}$$
余弦の積分は$$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$5 y^{2} {\color{red}{\int{\cos{\left(x \right)} d x}}} = 5 y^{2} {\color{red}{\sin{\left(x \right)}}}$$
したがって、
$$\int{5 y^{2} \cos{\left(x \right)} d x} = 5 y^{2} \sin{\left(x \right)}$$
積分定数を加える:
$$\int{5 y^{2} \cos{\left(x \right)} d x} = 5 y^{2} \sin{\left(x \right)}+C$$
解答
$$$\int 5 y^{2} \cos{\left(x \right)}\, dx = 5 y^{2} \sin{\left(x \right)} + C$$$A