Integral dari $$$5 y^{2} \cos{\left(x \right)}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int 5 y^{2} \cos{\left(x \right)}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=5 y^{2}$$$ dan $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{5 y^{2} \cos{\left(x \right)} d x}}} = {\color{red}{\left(5 y^{2} \int{\cos{\left(x \right)} d x}\right)}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$5 y^{2} {\color{red}{\int{\cos{\left(x \right)} d x}}} = 5 y^{2} {\color{red}{\sin{\left(x \right)}}}$$
Oleh karena itu,
$$\int{5 y^{2} \cos{\left(x \right)} d x} = 5 y^{2} \sin{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{5 y^{2} \cos{\left(x \right)} d x} = 5 y^{2} \sin{\left(x \right)}+C$$
Jawaban
$$$\int 5 y^{2} \cos{\left(x \right)}\, dx = 5 y^{2} \sin{\left(x \right)} + C$$$A