Integral of $$$4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}$$$

The calculator will find the integral/antiderivative of $$$4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x}}} = {\color{red}{\left(\int{4 x^{3} d x} - \int{\frac{1}{\cos{\left(2 x \right)}} d x}\right)}}$$

Let $$$u=2 x$$$.

Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.

Therefore,

$$\int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{\cos{\left(2 x \right)}} d x}}} = \int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \frac{1}{\cos{\left(u \right)}}$$$:

$$\int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}} = \int{4 x^{3} d x} - {\color{red}{\left(\frac{\int{\frac{1}{\cos{\left(u \right)}} d u}}{2}\right)}}$$

Rewrite the cosine in terms of the sine using the formula $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$ and then rewrite the sine using the double angle formula $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$:

$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$

Multiply the numerator and denominator by $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$:

$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$

Let $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.

Then $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (steps can be seen »), and we have that $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.

The integral can be rewritten as

$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

The integral of $$$\frac{1}{v}$$$ is $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Recall that $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} + \int{4 x^{3} d x} = - \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2} + \int{4 x^{3} d x}$$

Recall that $$$u=2 x$$$:

$$- \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)}}{2} + \int{4 x^{3} d x} = - \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}\right| \right)}}{2} + \int{4 x^{3} d x}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4$$$ and $$$f{\left(x \right)} = x^{3}$$$:

$$- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + {\color{red}{\int{4 x^{3} d x}}} = - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:

$$- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\int{x^{3} d x}}}=- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Therefore,

$$\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x} = x^{4} - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}$$

Add the constant of integration:

$$\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x} = x^{4} - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}+C$$

Answer

$$$\int \left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)\, dx = \left(x^{4} - \frac{\ln\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right|\right)}{2}\right) + C$$$A


Please try a new game Rotatly