Integral de $$$4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x}}} = {\color{red}{\left(\int{4 x^{3} d x} - \int{\frac{1}{\cos{\left(2 x \right)}} d x}\right)}}$$
Seja $$$u=2 x$$$.
Então $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.
Logo,
$$\int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{\cos{\left(2 x \right)}} d x}}} = \int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{\cos{\left(u \right)}}$$$:
$$\int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}} = \int{4 x^{3} d x} - {\color{red}{\left(\frac{\int{\frac{1}{\cos{\left(u \right)}} d u}}{2}\right)}}$$
Reescreva o cosseno em termos do seno usando a fórmula $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$ e depois reescreva o seno usando a fórmula do ângulo duplo $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$:
$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$
Multiplique o numerador e o denominador por $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$:
$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$
Seja $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.
Então $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (veja os passos »), e obtemos $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.
A integral torna-se
$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
A integral de $$$\frac{1}{v}$$$ é $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Recorde que $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} + \int{4 x^{3} d x} = - \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2} + \int{4 x^{3} d x}$$
Recorde que $$$u=2 x$$$:
$$- \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)}}{2} + \int{4 x^{3} d x} = - \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}\right| \right)}}{2} + \int{4 x^{3} d x}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=4$$$ e $$$f{\left(x \right)} = x^{3}$$$:
$$- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + {\color{red}{\int{4 x^{3} d x}}} = - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=3$$$:
$$- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\int{x^{3} d x}}}=- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Portanto,
$$\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x} = x^{4} - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}$$
Adicione a constante de integração:
$$\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x} = x^{4} - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}+C$$
Resposta
$$$\int \left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)\, dx = \left(x^{4} - \frac{\ln\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right|\right)}{2}\right) + C$$$A