Integral de $$$4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}$$$

A calculadora encontrará a integral/antiderivada de $$$4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)\, dx$$$.

Solução

Integre termo a termo:

$${\color{red}{\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x}}} = {\color{red}{\left(\int{4 x^{3} d x} - \int{\frac{1}{\cos{\left(2 x \right)}} d x}\right)}}$$

Seja $$$u=2 x$$$.

Então $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.

Logo,

$$\int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{\cos{\left(2 x \right)}} d x}}} = \int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{\cos{\left(u \right)}}$$$:

$$\int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}} = \int{4 x^{3} d x} - {\color{red}{\left(\frac{\int{\frac{1}{\cos{\left(u \right)}} d u}}{2}\right)}}$$

Reescreva o cosseno em termos do seno usando a fórmula $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$ e depois reescreva o seno usando a fórmula do ângulo duplo $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$:

$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$

Multiplique o numerador e o denominador por $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$:

$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$

Seja $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.

Então $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (veja os passos »), e obtemos $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.

A integral torna-se

$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

A integral de $$$\frac{1}{v}$$$ é $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Recorde que $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} + \int{4 x^{3} d x} = - \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2} + \int{4 x^{3} d x}$$

Recorde que $$$u=2 x$$$:

$$- \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)}}{2} + \int{4 x^{3} d x} = - \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}\right| \right)}}{2} + \int{4 x^{3} d x}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=4$$$ e $$$f{\left(x \right)} = x^{3}$$$:

$$- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + {\color{red}{\int{4 x^{3} d x}}} = - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=3$$$:

$$- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\int{x^{3} d x}}}=- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Portanto,

$$\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x} = x^{4} - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}$$

Adicione a constante de integração:

$$\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x} = x^{4} - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}+C$$

Resposta

$$$\int \left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)\, dx = \left(x^{4} - \frac{\ln\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right|\right)}{2}\right) + C$$$A


Please try a new game Rotatly