Intégrale de $$$4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x}}} = {\color{red}{\left(\int{4 x^{3} d x} - \int{\frac{1}{\cos{\left(2 x \right)}} d x}\right)}}$$
Soit $$$u=2 x$$$.
Alors $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{2}$$$.
L’intégrale peut être réécrite sous la forme
$$\int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{\cos{\left(2 x \right)}} d x}}} = \int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \frac{1}{\cos{\left(u \right)}}$$$ :
$$\int{4 x^{3} d x} - {\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}} = \int{4 x^{3} d x} - {\color{red}{\left(\frac{\int{\frac{1}{\cos{\left(u \right)}} d u}}{2}\right)}}$$
Réécrivez le cosinus en fonction du sinus à l’aide de la formule $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$, puis réécrivez le sinus à l’aide de la formule de l’angle double $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$:
$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$
Multipliez le numérateur et le dénominateur par $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$:
$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$
Soit $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.
Alors $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.
Par conséquent,
$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
L’intégrale de $$$\frac{1}{v}$$$ est $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ :
$$\int{4 x^{3} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \int{4 x^{3} d x} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Rappelons que $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$ :
$$- \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} + \int{4 x^{3} d x} = - \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2} + \int{4 x^{3} d x}$$
Rappelons que $$$u=2 x$$$ :
$$- \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)}}{2} + \int{4 x^{3} d x} = - \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}\right| \right)}}{2} + \int{4 x^{3} d x}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=4$$$ et $$$f{\left(x \right)} = x^{3}$$$ :
$$- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + {\color{red}{\int{4 x^{3} d x}}} = - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=3$$$ :
$$- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\int{x^{3} d x}}}=- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} + 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Par conséquent,
$$\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x} = x^{4} - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)d x} = x^{4} - \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}+C$$
Réponse
$$$\int \left(4 x^{3} - \frac{1}{\cos{\left(2 x \right)}}\right)\, dx = \left(x^{4} - \frac{\ln\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right|\right)}{2}\right) + C$$$A