Integral of $$$i n t x^{42}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int i n t x^{42}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=i n t$$$ and $$$f{\left(x \right)} = x^{42}$$$:
$${\color{red}{\int{i n t x^{42} d x}}} = {\color{red}{i n t \int{x^{42} d x}}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=42$$$:
$$i n t {\color{red}{\int{x^{42} d x}}}=i n t {\color{red}{\frac{x^{1 + 42}}{1 + 42}}}=i n t {\color{red}{\left(\frac{x^{43}}{43}\right)}}$$
Therefore,
$$\int{i n t x^{42} d x} = \frac{i n t x^{43}}{43}$$
Add the constant of integration:
$$\int{i n t x^{42} d x} = \frac{i n t x^{43}}{43}+C$$
Answer
$$$\int i n t x^{42}\, dx = \frac{i n t x^{43}}{43} + C$$$A