$$$i n t x^{42}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int i n t x^{42}\, dx$$$。
解答
对 $$$c=i n t$$$ 和 $$$f{\left(x \right)} = x^{42}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{i n t x^{42} d x}}} = {\color{red}{i n t \int{x^{42} d x}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=42$$$:
$$i n t {\color{red}{\int{x^{42} d x}}}=i n t {\color{red}{\frac{x^{1 + 42}}{1 + 42}}}=i n t {\color{red}{\left(\frac{x^{43}}{43}\right)}}$$
因此,
$$\int{i n t x^{42} d x} = \frac{i n t x^{43}}{43}$$
加上积分常数:
$$\int{i n t x^{42} d x} = \frac{i n t x^{43}}{43}+C$$
答案
$$$\int i n t x^{42}\, dx = \frac{i n t x^{43}}{43} + C$$$A
Please try a new game Rotatly