Integral of $$$\frac{1}{y^{3}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{y^{3}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{y^{3}}\, dy$$$.

Solution

Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-3$$$:

$${\color{red}{\int{\frac{1}{y^{3}} d y}}}={\color{red}{\int{y^{-3} d y}}}={\color{red}{\frac{y^{-3 + 1}}{-3 + 1}}}={\color{red}{\left(- \frac{y^{-2}}{2}\right)}}={\color{red}{\left(- \frac{1}{2 y^{2}}\right)}}$$

Therefore,

$$\int{\frac{1}{y^{3}} d y} = - \frac{1}{2 y^{2}}$$

Add the constant of integration:

$$\int{\frac{1}{y^{3}} d y} = - \frac{1}{2 y^{2}}+C$$

Answer

$$$\int \frac{1}{y^{3}}\, dy = - \frac{1}{2 y^{2}} + C$$$A


Please try a new game Rotatly