Integral of $$$t^{- n}$$$ with respect to $$$t$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int t^{- n}\, dt$$$.
Solution
Apply the power rule $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- n$$$:
$${\color{red}{\int{t^{- n} d t}}}={\color{red}{\frac{t^{1 - n}}{1 - n}}}={\color{red}{\frac{t^{1 - n}}{1 - n}}}$$
Therefore,
$$\int{t^{- n} d t} = \frac{t^{1 - n}}{1 - n}$$
Simplify:
$$\int{t^{- n} d t} = - \frac{t^{1 - n}}{n - 1}$$
Add the constant of integration:
$$\int{t^{- n} d t} = - \frac{t^{1 - n}}{n - 1}+C$$
Answer
$$$\int t^{- n}\, dt = - \frac{t^{1 - n}}{n - 1} + C$$$A
Please try a new game Rotatly