Integral of $$$\frac{1}{x^{2} + 2 x + 2}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{x^{2} + 2 x + 2}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{x^{2} + 2 x + 2}\, dx$$$.

Solution

Complete the square (steps can be seen »): $$$x^{2} + 2 x + 2 = \left(x + 1\right)^{2} + 1$$$:

$${\color{red}{\int{\frac{1}{x^{2} + 2 x + 2} d x}}} = {\color{red}{\int{\frac{1}{\left(x + 1\right)^{2} + 1} d x}}}$$

Let $$$u=x + 1$$$.

Then $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.

Therefore,

$${\color{red}{\int{\frac{1}{\left(x + 1\right)^{2} + 1} d x}}} = {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}$$

The integral of $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$${\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Recall that $$$u=x + 1$$$:

$$\operatorname{atan}{\left({\color{red}{u}} \right)} = \operatorname{atan}{\left({\color{red}{\left(x + 1\right)}} \right)}$$

Therefore,

$$\int{\frac{1}{x^{2} + 2 x + 2} d x} = \operatorname{atan}{\left(x + 1 \right)}$$

Add the constant of integration:

$$\int{\frac{1}{x^{2} + 2 x + 2} d x} = \operatorname{atan}{\left(x + 1 \right)}+C$$

Answer

$$$\int \frac{1}{x^{2} + 2 x + 2}\, dx = \operatorname{atan}{\left(x + 1 \right)} + C$$$A


Please try a new game Rotatly