Integralen av $$$\frac{1}{x^{2} + 2 x + 2}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{1}{x^{2} + 2 x + 2}\, dx$$$.
Lösning
Kvadratkomplettera (stegen kan ses »): $$$x^{2} + 2 x + 2 = \left(x + 1\right)^{2} + 1$$$:
$${\color{red}{\int{\frac{1}{x^{2} + 2 x + 2} d x}}} = {\color{red}{\int{\frac{1}{\left(x + 1\right)^{2} + 1} d x}}}$$
Låt $$$u=x + 1$$$ vara.
Då $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.
Integralen kan omskrivas som
$${\color{red}{\int{\frac{1}{\left(x + 1\right)^{2} + 1} d x}}} = {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}$$
Integralen av $$$\frac{1}{u^{2} + 1}$$$ är $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Kom ihåg att $$$u=x + 1$$$:
$$\operatorname{atan}{\left({\color{red}{u}} \right)} = \operatorname{atan}{\left({\color{red}{\left(x + 1\right)}} \right)}$$
Alltså,
$$\int{\frac{1}{x^{2} + 2 x + 2} d x} = \operatorname{atan}{\left(x + 1 \right)}$$
Lägg till integrationskonstanten:
$$\int{\frac{1}{x^{2} + 2 x + 2} d x} = \operatorname{atan}{\left(x + 1 \right)}+C$$
Svar
$$$\int \frac{1}{x^{2} + 2 x + 2}\, dx = \operatorname{atan}{\left(x + 1 \right)} + C$$$A