Integrale di $$$\frac{1}{x^{2} + 2 x + 2}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{x^{2} + 2 x + 2}\, dx$$$.
Soluzione
Completa il quadrato (i passaggi sono visibili »): $$$x^{2} + 2 x + 2 = \left(x + 1\right)^{2} + 1$$$:
$${\color{red}{\int{\frac{1}{x^{2} + 2 x + 2} d x}}} = {\color{red}{\int{\frac{1}{\left(x + 1\right)^{2} + 1} d x}}}$$
Sia $$$u=x + 1$$$.
Quindi $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.
Pertanto,
$${\color{red}{\int{\frac{1}{\left(x + 1\right)^{2} + 1} d x}}} = {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}$$
L'integrale di $$$\frac{1}{u^{2} + 1}$$$ è $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Ricordiamo che $$$u=x + 1$$$:
$$\operatorname{atan}{\left({\color{red}{u}} \right)} = \operatorname{atan}{\left({\color{red}{\left(x + 1\right)}} \right)}$$
Pertanto,
$$\int{\frac{1}{x^{2} + 2 x + 2} d x} = \operatorname{atan}{\left(x + 1 \right)}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{x^{2} + 2 x + 2} d x} = \operatorname{atan}{\left(x + 1 \right)}+C$$
Risposta
$$$\int \frac{1}{x^{2} + 2 x + 2}\, dx = \operatorname{atan}{\left(x + 1 \right)} + C$$$A