Ολοκλήρωμα του $$$\frac{1}{x^{2} + 2 x + 2}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{1}{x^{2} + 2 x + 2}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{1}{x^{2} + 2 x + 2}\, dx$$$.

Λύση

Συμπληρώστε το τετράγωνο (τα βήματα μπορούν να προβληθούν »): $$$x^{2} + 2 x + 2 = \left(x + 1\right)^{2} + 1$$$:

$${\color{red}{\int{\frac{1}{x^{2} + 2 x + 2} d x}}} = {\color{red}{\int{\frac{1}{\left(x + 1\right)^{2} + 1} d x}}}$$

Έστω $$$u=x + 1$$$.

Τότε $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$${\color{red}{\int{\frac{1}{\left(x + 1\right)^{2} + 1} d x}}} = {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}$$

Το ολοκλήρωμα του $$$\frac{1}{u^{2} + 1}$$$ είναι $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$${\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Θυμηθείτε ότι $$$u=x + 1$$$:

$$\operatorname{atan}{\left({\color{red}{u}} \right)} = \operatorname{atan}{\left({\color{red}{\left(x + 1\right)}} \right)}$$

Επομένως,

$$\int{\frac{1}{x^{2} + 2 x + 2} d x} = \operatorname{atan}{\left(x + 1 \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{x^{2} + 2 x + 2} d x} = \operatorname{atan}{\left(x + 1 \right)}+C$$

Απάντηση

$$$\int \frac{1}{x^{2} + 2 x + 2}\, dx = \operatorname{atan}{\left(x + 1 \right)} + C$$$A


Please try a new game Rotatly