Integral of $$$\frac{1}{f \left(2 a - x\right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{f \left(2 a - x\right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{f}$$$ and $$$f{\left(x \right)} = \frac{1}{2 a - x}$$$:
$${\color{red}{\int{\frac{1}{f \left(2 a - x\right)} d x}}} = {\color{red}{\frac{\int{\frac{1}{2 a - x} d x}}{f}}}$$
Let $$$u=2 a - x$$$.
Then $$$du=\left(2 a - x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
The integral can be rewritten as
$$\frac{{\color{red}{\int{\frac{1}{2 a - x} d x}}}}{f} = \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{f}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{f} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{f}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{f} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{f}$$
Recall that $$$u=2 a - x$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{f} = - \frac{\ln{\left(\left|{{\color{red}{\left(2 a - x\right)}}}\right| \right)}}{f}$$
Therefore,
$$\int{\frac{1}{f \left(2 a - x\right)} d x} = - \frac{\ln{\left(\left|{2 a - x}\right| \right)}}{f}$$
Add the constant of integration:
$$\int{\frac{1}{f \left(2 a - x\right)} d x} = - \frac{\ln{\left(\left|{2 a - x}\right| \right)}}{f}+C$$
Answer
$$$\int \frac{1}{f \left(2 a - x\right)}\, dx = - \frac{\ln\left(\left|{2 a - x}\right|\right)}{f} + C$$$A