Integral of $$$\frac{1}{f \left(2 a - x\right)}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{f \left(2 a - x\right)}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{f \left(2 a - x\right)}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{f}$$$ and $$$f{\left(x \right)} = \frac{1}{2 a - x}$$$:

$${\color{red}{\int{\frac{1}{f \left(2 a - x\right)} d x}}} = {\color{red}{\frac{\int{\frac{1}{2 a - x} d x}}{f}}}$$

Let $$$u=2 a - x$$$.

Then $$$du=\left(2 a - x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.

The integral can be rewritten as

$$\frac{{\color{red}{\int{\frac{1}{2 a - x} d x}}}}{f} = \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{f}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{f} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{f}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{f} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{f}$$

Recall that $$$u=2 a - x$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{f} = - \frac{\ln{\left(\left|{{\color{red}{\left(2 a - x\right)}}}\right| \right)}}{f}$$

Therefore,

$$\int{\frac{1}{f \left(2 a - x\right)} d x} = - \frac{\ln{\left(\left|{2 a - x}\right| \right)}}{f}$$

Add the constant of integration:

$$\int{\frac{1}{f \left(2 a - x\right)} d x} = - \frac{\ln{\left(\left|{2 a - x}\right| \right)}}{f}+C$$

Answer

$$$\int \frac{1}{f \left(2 a - x\right)}\, dx = - \frac{\ln\left(\left|{2 a - x}\right|\right)}{f} + C$$$A


Please try a new game Rotatly