Integraali $$$\frac{1}{f \left(2 a - x\right)}$$$:stä muuttujan $$$x$$$ suhteen

Laskin löytää funktion $$$\frac{1}{f \left(2 a - x\right)}$$$ integraalin/kantafunktion muuttujan $$$x$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{f \left(2 a - x\right)}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{f}$$$ ja $$$f{\left(x \right)} = \frac{1}{2 a - x}$$$:

$${\color{red}{\int{\frac{1}{f \left(2 a - x\right)} d x}}} = {\color{red}{\frac{\int{\frac{1}{2 a - x} d x}}{f}}}$$

Olkoon $$$u=2 a - x$$$.

Tällöin $$$du=\left(2 a - x\right)^{\prime }dx = - dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = - du$$$.

Integraali voidaan kirjoittaa muotoon

$$\frac{{\color{red}{\int{\frac{1}{2 a - x} d x}}}}{f} = \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{f}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{f} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{f}$$

Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{f} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{f}$$

Muista, että $$$u=2 a - x$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{f} = - \frac{\ln{\left(\left|{{\color{red}{\left(2 a - x\right)}}}\right| \right)}}{f}$$

Näin ollen,

$$\int{\frac{1}{f \left(2 a - x\right)} d x} = - \frac{\ln{\left(\left|{2 a - x}\right| \right)}}{f}$$

Lisää integrointivakio:

$$\int{\frac{1}{f \left(2 a - x\right)} d x} = - \frac{\ln{\left(\left|{2 a - x}\right| \right)}}{f}+C$$

Vastaus

$$$\int \frac{1}{f \left(2 a - x\right)}\, dx = - \frac{\ln\left(\left|{2 a - x}\right|\right)}{f} + C$$$A


Please try a new game Rotatly