Integralen av $$$\frac{1}{f \left(2 a - x\right)}$$$ med avseende på $$$x$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$\frac{1}{f \left(2 a - x\right)}$$$ med avseende på $$$x$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{1}{f \left(2 a - x\right)}\, dx$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{f}$$$ och $$$f{\left(x \right)} = \frac{1}{2 a - x}$$$:

$${\color{red}{\int{\frac{1}{f \left(2 a - x\right)} d x}}} = {\color{red}{\frac{\int{\frac{1}{2 a - x} d x}}{f}}}$$

Låt $$$u=2 a - x$$$ vara.

$$$du=\left(2 a - x\right)^{\prime }dx = - dx$$$ (stegen kan ses »), och vi har att $$$dx = - du$$$.

Alltså,

$$\frac{{\color{red}{\int{\frac{1}{2 a - x} d x}}}}{f} = \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{f}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-1$$$ och $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{f} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{f}$$

Integralen av $$$\frac{1}{u}$$$ är $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{f} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{f}$$

Kom ihåg att $$$u=2 a - x$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{f} = - \frac{\ln{\left(\left|{{\color{red}{\left(2 a - x\right)}}}\right| \right)}}{f}$$

Alltså,

$$\int{\frac{1}{f \left(2 a - x\right)} d x} = - \frac{\ln{\left(\left|{2 a - x}\right| \right)}}{f}$$

Lägg till integrationskonstanten:

$$\int{\frac{1}{f \left(2 a - x\right)} d x} = - \frac{\ln{\left(\left|{2 a - x}\right| \right)}}{f}+C$$

Svar

$$$\int \frac{1}{f \left(2 a - x\right)}\, dx = - \frac{\ln\left(\left|{2 a - x}\right|\right)}{f} + C$$$A


Please try a new game Rotatly