Integral of $$$\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(t \right)} = \left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}$$$:
$${\color{red}{\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t}}} = {\color{red}{\left(\frac{\int{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)} d t}}{2}\right)}}$$
Let $$$u=1 - \frac{\sin{\left(t \right)}}{2}$$$.
Then $$$du=\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{\prime }dt = - \frac{\cos{\left(t \right)}}{2} dt$$$ (steps can be seen »), and we have that $$$\cos{\left(t \right)} dt = - 2 du$$$.
Thus,
$$\frac{{\color{red}{\int{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)} d t}}}}{2} = \frac{{\color{red}{\int{\left(- 2 u^{2}\right)d u}}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-2$$$ and $$$f{\left(u \right)} = u^{2}$$$:
$$\frac{{\color{red}{\int{\left(- 2 u^{2}\right)d u}}}}{2} = \frac{{\color{red}{\left(- 2 \int{u^{2} d u}\right)}}}{2}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$- {\color{red}{\int{u^{2} d u}}}=- {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Recall that $$$u=1 - \frac{\sin{\left(t \right)}}{2}$$$:
$$- \frac{{\color{red}{u}}^{3}}{3} = - \frac{{\color{red}{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)}}^{3}}{3}$$
Therefore,
$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = - \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{3}}{3}$$
Simplify:
$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24}$$
Add the constant of integration:
$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24}+C$$
Answer
$$$\int \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}\, dt = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24} + C$$$A