$$$\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}\, dt$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(t \right)} = \left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}$$$ ile uygula:

$${\color{red}{\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t}}} = {\color{red}{\left(\frac{\int{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)} d t}}{2}\right)}}$$

$$$u=1 - \frac{\sin{\left(t \right)}}{2}$$$ olsun.

Böylece $$$du=\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{\prime }dt = - \frac{\cos{\left(t \right)}}{2} dt$$$ (adımlar » görülebilir) ve $$$\cos{\left(t \right)} dt = - 2 du$$$ elde ederiz.

Dolayısıyla,

$$\frac{{\color{red}{\int{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)} d t}}}}{2} = \frac{{\color{red}{\int{\left(- 2 u^{2}\right)d u}}}}{2}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-2$$$ ve $$$f{\left(u \right)} = u^{2}$$$ ile uygula:

$$\frac{{\color{red}{\int{\left(- 2 u^{2}\right)d u}}}}{2} = \frac{{\color{red}{\left(- 2 \int{u^{2} d u}\right)}}}{2}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:

$$- {\color{red}{\int{u^{2} d u}}}=- {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Hatırlayın ki $$$u=1 - \frac{\sin{\left(t \right)}}{2}$$$:

$$- \frac{{\color{red}{u}}^{3}}{3} = - \frac{{\color{red}{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)}}^{3}}{3}$$

Dolayısıyla,

$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = - \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{3}}{3}$$

Sadeleştirin:

$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24}+C$$

Cevap

$$$\int \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}\, dt = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24} + C$$$A


Please try a new game Rotatly