Integralen av $$$\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}\, dt$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(t \right)} = \left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}$$$:

$${\color{red}{\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t}}} = {\color{red}{\left(\frac{\int{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)} d t}}{2}\right)}}$$

Låt $$$u=1 - \frac{\sin{\left(t \right)}}{2}$$$ vara.

$$$du=\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{\prime }dt = - \frac{\cos{\left(t \right)}}{2} dt$$$ (stegen kan ses »), och vi har att $$$\cos{\left(t \right)} dt = - 2 du$$$.

Alltså,

$$\frac{{\color{red}{\int{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)} d t}}}}{2} = \frac{{\color{red}{\int{\left(- 2 u^{2}\right)d u}}}}{2}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-2$$$ och $$$f{\left(u \right)} = u^{2}$$$:

$$\frac{{\color{red}{\int{\left(- 2 u^{2}\right)d u}}}}{2} = \frac{{\color{red}{\left(- 2 \int{u^{2} d u}\right)}}}{2}$$

Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=2$$$:

$$- {\color{red}{\int{u^{2} d u}}}=- {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Kom ihåg att $$$u=1 - \frac{\sin{\left(t \right)}}{2}$$$:

$$- \frac{{\color{red}{u}}^{3}}{3} = - \frac{{\color{red}{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)}}^{3}}{3}$$

Alltså,

$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = - \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{3}}{3}$$

Förenkla:

$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24}$$

Lägg till integrationskonstanten:

$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24}+C$$

Svar

$$$\int \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}\, dt = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24} + C$$$A


Please try a new game Rotatly