$$$\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}\, dt$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$$$$c=\frac{1}{2}$$$$$$f{\left(t \right)} = \left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}$$$에 적용하세요:

$${\color{red}{\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t}}} = {\color{red}{\left(\frac{\int{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)} d t}}{2}\right)}}$$

$$$u=1 - \frac{\sin{\left(t \right)}}{2}$$$라 하자.

그러면 $$$du=\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{\prime }dt = - \frac{\cos{\left(t \right)}}{2} dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(t \right)} dt = - 2 du$$$임을 얻습니다.

따라서,

$$\frac{{\color{red}{\int{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)} d t}}}}{2} = \frac{{\color{red}{\int{\left(- 2 u^{2}\right)d u}}}}{2}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=-2$$$$$$f{\left(u \right)} = u^{2}$$$에 적용하세요:

$$\frac{{\color{red}{\int{\left(- 2 u^{2}\right)d u}}}}{2} = \frac{{\color{red}{\left(- 2 \int{u^{2} d u}\right)}}}{2}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:

$$- {\color{red}{\int{u^{2} d u}}}=- {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

다음 $$$u=1 - \frac{\sin{\left(t \right)}}{2}$$$을 기억하라:

$$- \frac{{\color{red}{u}}^{3}}{3} = - \frac{{\color{red}{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)}}^{3}}{3}$$

따라서,

$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = - \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{3}}{3}$$

간단히 하시오:

$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24}$$

적분 상수를 추가하세요:

$$\int{\frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2} d t} = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24}+C$$

정답

$$$\int \frac{\left(1 - \frac{\sin{\left(t \right)}}{2}\right)^{2} \cos{\left(t \right)}}{2}\, dt = \frac{\left(\sin{\left(t \right)} - 2\right)^{3}}{24} + C$$$A


Please try a new game Rotatly