$$$z - 10 \sin{\left(x \right)}$$$$$$x$$$ 的積分

此計算器會求出 $$$z - 10 \sin{\left(x \right)}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(z - 10 \sin{\left(x \right)}\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(z - 10 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{z d x} - \int{10 \sin{\left(x \right)} d x}\right)}}$$

配合 $$$c=z$$$,應用常數法則 $$$\int c\, dx = c x$$$

$$- \int{10 \sin{\left(x \right)} d x} + {\color{red}{\int{z d x}}} = - \int{10 \sin{\left(x \right)} d x} + {\color{red}{x z}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=10$$$$$$f{\left(x \right)} = \sin{\left(x \right)}$$$

$$x z - {\color{red}{\int{10 \sin{\left(x \right)} d x}}} = x z - {\color{red}{\left(10 \int{\sin{\left(x \right)} d x}\right)}}$$

正弦函數的積分為 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$

$$x z - 10 {\color{red}{\int{\sin{\left(x \right)} d x}}} = x z - 10 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

因此,

$$\int{\left(z - 10 \sin{\left(x \right)}\right)d x} = x z + 10 \cos{\left(x \right)}$$

加上積分常數:

$$\int{\left(z - 10 \sin{\left(x \right)}\right)d x} = x z + 10 \cos{\left(x \right)}+C$$

答案

$$$\int \left(z - 10 \sin{\left(x \right)}\right)\, dx = \left(x z + 10 \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly