Integrale di $$$z - 10 \sin{\left(x \right)}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(z - 10 \sin{\left(x \right)}\right)\, dx$$$.
Soluzione
Integra termine per termine:
$${\color{red}{\int{\left(z - 10 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{z d x} - \int{10 \sin{\left(x \right)} d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=z$$$:
$$- \int{10 \sin{\left(x \right)} d x} + {\color{red}{\int{z d x}}} = - \int{10 \sin{\left(x \right)} d x} + {\color{red}{x z}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=10$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$x z - {\color{red}{\int{10 \sin{\left(x \right)} d x}}} = x z - {\color{red}{\left(10 \int{\sin{\left(x \right)} d x}\right)}}$$
L'integrale del seno è $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$x z - 10 {\color{red}{\int{\sin{\left(x \right)} d x}}} = x z - 10 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Pertanto,
$$\int{\left(z - 10 \sin{\left(x \right)}\right)d x} = x z + 10 \cos{\left(x \right)}$$
Aggiungi la costante di integrazione:
$$\int{\left(z - 10 \sin{\left(x \right)}\right)d x} = x z + 10 \cos{\left(x \right)}+C$$
Risposta
$$$\int \left(z - 10 \sin{\left(x \right)}\right)\, dx = \left(x z + 10 \cos{\left(x \right)}\right) + C$$$A