$$$\sec{\left(\theta \right)}$$$ 的積分

此計算器將求出 $$$\sec{\left(\theta \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sec{\left(\theta \right)}\, d\theta$$$

解答

將正割改寫為 $$$\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}$$$:

$${\color{red}{\int{\sec{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\frac{1}{\cos{\left(\theta \right)}} d \theta}}}$$

使用公式 $$$\cos\left(\theta\right)=\sin\left(\theta + \frac{\pi}{2}\right)$$$ 將餘弦用正弦表示,然後使用二倍角公式 $$$\sin\left(\theta\right)=2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$$$ 將正弦改寫。:

$${\color{red}{\int{\frac{1}{\cos{\left(\theta \right)}} d \theta}}} = {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}}$$

將分子與分母同時乘以 $$$\sec^2\left(\frac{\theta}{2} + \frac{\pi}{4} \right)$$$:

$${\color{red}{\int{\frac{1}{2 \sin{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}} = {\color{red}{\int{\frac{\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}}$$

$$$u=\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}$$$

$$$du=\left(\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}\right)^{\prime }d\theta = \frac{\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}{2} d\theta$$$ (步驟見»),並可得 $$$\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)} d\theta = 2 du$$$

因此,

$${\color{red}{\int{\frac{\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回顧一下 $$$u=\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}$$$

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}$$

因此,

$$\int{\sec{\left(\theta \right)} d \theta} = \ln{\left(\left|{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}\right| \right)}$$

加上積分常數:

$$\int{\sec{\left(\theta \right)} d \theta} = \ln{\left(\left|{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}\right| \right)}+C$$

答案

$$$\int \sec{\left(\theta \right)}\, d\theta = \ln\left(\left|{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}\right|\right) + C$$$A


Please try a new game Rotatly