$$$\frac{x - 1}{3 - x}$$$ 的積分

此計算器將求出 $$$\frac{x - 1}{3 - x}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{x - 1}{3 - x}\, dx$$$

解答

$$$u=3 - x$$$

$$$du=\left(3 - x\right)^{\prime }dx = - dx$$$ (步驟見»),並可得 $$$dx = - du$$$

因此,

$${\color{red}{\int{\frac{x - 1}{3 - x} d x}}} = {\color{red}{\int{\frac{u - 2}{u} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{u - 2}{u} d u}}} = {\color{red}{\int{\left(1 - \frac{2}{u}\right)d u}}}$$

逐項積分:

$${\color{red}{\int{\left(1 - \frac{2}{u}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{2}{u} d u}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$$- \int{\frac{2}{u} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{2}{u} d u} + {\color{red}{u}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$$$$f{\left(u \right)} = \frac{1}{u}$$$

$$u - {\color{red}{\int{\frac{2}{u} d u}}} = u - {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$u - 2 {\color{red}{\int{\frac{1}{u} d u}}} = u - 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回顧一下 $$$u=3 - x$$$

$$- 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + {\color{red}{u}} = - 2 \ln{\left(\left|{{\color{red}{\left(3 - x\right)}}}\right| \right)} + {\color{red}{\left(3 - x\right)}}$$

因此,

$$\int{\frac{x - 1}{3 - x} d x} = - x - 2 \ln{\left(\left|{x - 3}\right| \right)} + 3$$

加上積分常數(並從表達式中移除常數項):

$$\int{\frac{x - 1}{3 - x} d x} = - x - 2 \ln{\left(\left|{x - 3}\right| \right)}+C$$

答案

$$$\int \frac{x - 1}{3 - x}\, dx = \left(- x - 2 \ln\left(\left|{x - 3}\right|\right)\right) + C$$$A


Please try a new game Rotatly