$$$\frac{x - 1}{3 - x}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{x - 1}{3 - x}\, dx$$$.
Çözüm
$$$u=3 - x$$$ olsun.
Böylece $$$du=\left(3 - x\right)^{\prime }dx = - dx$$$ (adımlar » görülebilir) ve $$$dx = - du$$$ elde ederiz.
O halde,
$${\color{red}{\int{\frac{x - 1}{3 - x} d x}}} = {\color{red}{\int{\frac{u - 2}{u} d u}}}$$
Expand the expression:
$${\color{red}{\int{\frac{u - 2}{u} d u}}} = {\color{red}{\int{\left(1 - \frac{2}{u}\right)d u}}}$$
Her terimin integralini alın:
$${\color{red}{\int{\left(1 - \frac{2}{u}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{2}{u} d u}\right)}}$$
$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:
$$- \int{\frac{2}{u} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{2}{u} d u} + {\color{red}{u}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:
$$u - {\color{red}{\int{\frac{2}{u} d u}}} = u - {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$u - 2 {\color{red}{\int{\frac{1}{u} d u}}} = u - 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Hatırlayın ki $$$u=3 - x$$$:
$$- 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + {\color{red}{u}} = - 2 \ln{\left(\left|{{\color{red}{\left(3 - x\right)}}}\right| \right)} + {\color{red}{\left(3 - x\right)}}$$
Dolayısıyla,
$$\int{\frac{x - 1}{3 - x} d x} = - x - 2 \ln{\left(\left|{x - 3}\right| \right)} + 3$$
İntegrasyon sabitini ekleyin (ve ifadeden sabit terimi kaldırın):
$$\int{\frac{x - 1}{3 - x} d x} = - x - 2 \ln{\left(\left|{x - 3}\right| \right)}+C$$
Cevap
$$$\int \frac{x - 1}{3 - x}\, dx = \left(- x - 2 \ln\left(\left|{x - 3}\right|\right)\right) + C$$$A