$$$\frac{x - 1}{3 - x}$$$ 的积分
您的输入
求$$$\int \frac{x - 1}{3 - x}\, dx$$$。
解答
设$$$u=3 - x$$$。
则$$$du=\left(3 - x\right)^{\prime }dx = - dx$$$ (步骤见»),并有$$$dx = - du$$$。
因此,
$${\color{red}{\int{\frac{x - 1}{3 - x} d x}}} = {\color{red}{\int{\frac{u - 2}{u} d u}}}$$
Expand the expression:
$${\color{red}{\int{\frac{u - 2}{u} d u}}} = {\color{red}{\int{\left(1 - \frac{2}{u}\right)d u}}}$$
逐项积分:
$${\color{red}{\int{\left(1 - \frac{2}{u}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{2}{u} d u}\right)}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$- \int{\frac{2}{u} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{2}{u} d u} + {\color{red}{u}}$$
对 $$$c=2$$$ 和 $$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$u - {\color{red}{\int{\frac{2}{u} d u}}} = u - {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$u - 2 {\color{red}{\int{\frac{1}{u} d u}}} = u - 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=3 - x$$$:
$$- 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + {\color{red}{u}} = - 2 \ln{\left(\left|{{\color{red}{\left(3 - x\right)}}}\right| \right)} + {\color{red}{\left(3 - x\right)}}$$
因此,
$$\int{\frac{x - 1}{3 - x} d x} = - x - 2 \ln{\left(\left|{x - 3}\right| \right)} + 3$$
加上积分常数(并从表达式中去除常数项):
$$\int{\frac{x - 1}{3 - x} d x} = - x - 2 \ln{\left(\left|{x - 3}\right| \right)}+C$$
答案
$$$\int \frac{x - 1}{3 - x}\, dx = \left(- x - 2 \ln\left(\left|{x - 3}\right|\right)\right) + C$$$A