$$$\operatorname{acsc}{\left(x \right)}$$$ 的積分

此計算器將求出 $$$\operatorname{acsc}{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \operatorname{acsc}{\left(x \right)}\, dx$$$

解答

對於積分 $$$\int{\operatorname{acsc}{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\operatorname{acsc}{\left(x \right)}$$$$$$\operatorname{dv}=dx$$$

$$$\operatorname{du}=\left(\operatorname{acsc}{\left(x \right)}\right)^{\prime }dx=- \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x}=x$$$(步驟見 »)。

所以,

$${\color{red}{\int{\operatorname{acsc}{\left(x \right)} d x}}}={\color{red}{\left(\operatorname{acsc}{\left(x \right)} \cdot x-\int{x \cdot \left(- \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right) d x}\right)}}={\color{red}{\left(x \operatorname{acsc}{\left(x \right)} - \int{\left(- \frac{\left|{x}\right|}{x \sqrt{x^{2} - 1}}\right)d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=-1$$$$$$f{\left(x \right)} = \frac{1}{\sqrt{x^{2} - 1}}$$$

$$x \operatorname{acsc}{\left(x \right)} - {\color{red}{\int{\left(- \frac{\left|{x}\right|}{x \sqrt{x^{2} - 1}}\right)d x}}} = x \operatorname{acsc}{\left(x \right)} - {\color{red}{\left(- \int{\frac{1}{\sqrt{x^{2} - 1}} d x}\right)}}$$

$$$x=\cosh{\left(u \right)}$$$

$$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$(步驟見»)。

此外,由此可得 $$$u=\operatorname{acosh}{\left(x \right)}$$$

因此,

$$$\frac{1}{\sqrt{x^{2} - 1}} = \frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1}}$$$

使用恆等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$

$$$\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1}}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}}}$$$

假設 $$$\sinh{\left( u \right)} \ge 0$$$,可得如下:

$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}}} = \frac{1}{\sinh{\left( u \right)}}$$$

積分變為

$$x \operatorname{acsc}{\left(x \right)} + {\color{red}{\int{\frac{1}{\sqrt{x^{2} - 1}} d x}}} = x \operatorname{acsc}{\left(x \right)} + {\color{red}{\int{1 d u}}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$$x \operatorname{acsc}{\left(x \right)} + {\color{red}{\int{1 d u}}} = x \operatorname{acsc}{\left(x \right)} + {\color{red}{u}}$$

回顧一下 $$$u=\operatorname{acosh}{\left(x \right)}$$$

$$x \operatorname{acsc}{\left(x \right)} + {\color{red}{u}} = x \operatorname{acsc}{\left(x \right)} + {\color{red}{\operatorname{acosh}{\left(x \right)}}}$$

因此,

$$\int{\operatorname{acsc}{\left(x \right)} d x} = x \operatorname{acsc}{\left(x \right)} + \operatorname{acosh}{\left(x \right)}$$

加上積分常數:

$$\int{\operatorname{acsc}{\left(x \right)} d x} = x \operatorname{acsc}{\left(x \right)} + \operatorname{acosh}{\left(x \right)}+C$$

答案

$$$\int \operatorname{acsc}{\left(x \right)}\, dx = \left(x \operatorname{acsc}{\left(x \right)} + \operatorname{acosh}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly