$$$\operatorname{acsc}{\left(x \right)}$$$ 的积分
您的输入
求$$$\int \operatorname{acsc}{\left(x \right)}\, dx$$$。
解答
对于积分$$$\int{\operatorname{acsc}{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\operatorname{acsc}{\left(x \right)}$$$ 和 $$$\operatorname{dv}=dx$$$。
则 $$$\operatorname{du}=\left(\operatorname{acsc}{\left(x \right)}\right)^{\prime }dx=- \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}} dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d x}=x$$$ (步骤见 »)。
因此,
$${\color{red}{\int{\operatorname{acsc}{\left(x \right)} d x}}}={\color{red}{\left(\operatorname{acsc}{\left(x \right)} \cdot x-\int{x \cdot \left(- \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right) d x}\right)}}={\color{red}{\left(x \operatorname{acsc}{\left(x \right)} - \int{\left(- \frac{\left|{x}\right|}{x \sqrt{x^{2} - 1}}\right)d x}\right)}}$$
对 $$$c=-1$$$ 和 $$$f{\left(x \right)} = \frac{1}{\sqrt{x^{2} - 1}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$x \operatorname{acsc}{\left(x \right)} - {\color{red}{\int{\left(- \frac{\left|{x}\right|}{x \sqrt{x^{2} - 1}}\right)d x}}} = x \operatorname{acsc}{\left(x \right)} - {\color{red}{\left(- \int{\frac{1}{\sqrt{x^{2} - 1}} d x}\right)}}$$
设$$$x=\cosh{\left(u \right)}$$$。
则$$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$(步骤见»)。
此外,可得$$$u=\operatorname{acosh}{\left(x \right)}$$$。
被积函数变为
$$$\frac{1}{\sqrt{x^{2} - 1}} = \frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1}}$$$
利用恒等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1}}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}}}$$$
假设$$$\sinh{\left( u \right)} \ge 0$$$,我们得到如下结果:
$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}}} = \frac{1}{\sinh{\left( u \right)}}$$$
积分变为
$$x \operatorname{acsc}{\left(x \right)} + {\color{red}{\int{\frac{1}{\sqrt{x^{2} - 1}} d x}}} = x \operatorname{acsc}{\left(x \right)} + {\color{red}{\int{1 d u}}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$x \operatorname{acsc}{\left(x \right)} + {\color{red}{\int{1 d u}}} = x \operatorname{acsc}{\left(x \right)} + {\color{red}{u}}$$
回忆一下 $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$$x \operatorname{acsc}{\left(x \right)} + {\color{red}{u}} = x \operatorname{acsc}{\left(x \right)} + {\color{red}{\operatorname{acosh}{\left(x \right)}}}$$
因此,
$$\int{\operatorname{acsc}{\left(x \right)} d x} = x \operatorname{acsc}{\left(x \right)} + \operatorname{acosh}{\left(x \right)}$$
加上积分常数:
$$\int{\operatorname{acsc}{\left(x \right)} d x} = x \operatorname{acsc}{\left(x \right)} + \operatorname{acosh}{\left(x \right)}+C$$
答案
$$$\int \operatorname{acsc}{\left(x \right)}\, dx = \left(x \operatorname{acsc}{\left(x \right)} + \operatorname{acosh}{\left(x \right)}\right) + C$$$A